Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Methods Mol Biol ; 2759: 131-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285145

RESUMO

The main difficulty for the cultivation and conservation of bromeliad species is the reduced number of propagules and slow growth of many of the species, resulting in a low propagation efficiency. Bromeliad plants are hardy and relatively easy to cultivate, with a high ornamental and ecological importance. Aiming at efficient micropropagation rates of V. hieroglyphica, a highly valued bromeliad, with very low propagation efficiency, a temporary immersion system was used and compared to semisolid and liquid static medium. Cultures obtained from in vitro germinated seeds were used as explants, maintaining their genetic diversity. Micropropagation with this simple temporary immersion system, composed of two autoclavable flasks, each with one opening for the attachment of 22 µm syringe filters, connected by a rubber stopper and an inner glass tube. In the bottom flask, an air valve is attached to the filter, which is subsequently connected to an aquarium pump and a timer and plugged to an outlet. This simple temporary immersion system showed improved micropropagation efficiency and is a method that can also be evaluated for other species.


Assuntos
Bromeliaceae , Imersão , Cateteres , Reprodução , Sementes
2.
Ann Bot ; 132(3): 443-454, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37647886

RESUMO

BACKGROUND AND AIMS: Phenotypic plasticity allows plants to cope with environmental variability. Plastic responses to the environment have mostly been investigated at the level of individuals (plants) but can also occur within leaves. Yet the latter have been underexplored, as leaves are often treated as functional units with no spatial structure. We investigated the effect of a strong light gradient on plant and leaf traits and examined whether different portions of a leaf show similar or differential responses to light intensity. METHODS: We measured variation in 27 morpho-anatomical and physiological traits of the rosette and leaf portions (i.e. base and apex) of the tank bromeliad Aechmea aquilega (Bromeliaceae) when naturally exposed to a marked gradient of light intensity. KEY RESULTS: The light intensity received by A. aquilega had a strong effect on the structural, biochemical and physiological traits of the entire rosette. Plants exposed to high light intensity were smaller and had wider, shorter, more rigid and more vertical leaves. They also had lower photosynthetic performance and nutrient levels. We found significant differences between the apex and basal portions of the leaf under low-light conditions, and the differences declined or disappeared for most of the traits as light intensity increased (i.e. leaf thickness, adaxial trichome density, abaxial and adaxial trichome surface, and vascular bundle surface and density). CONCLUSIONS: Our results reveal a strong phenotypic plasticity in A. aquilega, particularly in the form of a steep functional gradient within the leaf under low-light conditions. Under high-light conditions, trait values were relatively uniform along the leaf. This study sheds interesting new light on the functional complexity of tank bromeliad leaves, and on the effect of environmental conditions on leaf trait regionalization.


Assuntos
Adaptação Fisiológica , Folhas de Planta , Bromeliaceae , Fotossíntese , Folhas de Planta/fisiologia , Plantas
3.
Zoologia, v.40, e23001, set. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5154

RESUMO

Brazil is the country with the most diverse tarantula (Theraphosidae) fauna, having 215 described species. Vitalius Lucas, Silva Júnior & Bertani, 1993 is one of the most diverse and common genera in Southern, Southeastern and Central-West regions of Brazil with ten described species. Individuals of Vitalius species are large and widespread in areas of the Brazilian Atlantic Forest. A single species is known to occur in areas of Cerrado vegetation. Herein, two new species are described from areas of restinga, coastal areas typically with low vegetation and sandy soil, in the coast of the states of Rio de Janeiro (Vitalius restinga sp. nov.), Bahia and Sergipe (Vitalius sapiranga sp. nov.). Males and females of these two new species have a much longer than wide sternum. Males have a short apical keel in the male palpal bulb. The two species can be distinguished by embolus width, slender in V. restinga sp. nov. and thicker in V. sapiranga sp. nov. Females can be distinguished by the spermathecae shape, slender in V. restinga sp. nov. and broader in V. sapiranga sp. nov. These are the first known theraphosids endemic to Brazilian Atlantic Coast restingas. Biological data indicate V. sapiranga sp. nov. and maybe V. restinga sp. nov. commonly use bromeliads as retreats. It is herein hypothesized they are sister species occupying similar habitats in Brazilian coast, but separated by ca. 1,000 kilometers.

4.
Zool Stud ; 60: e27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245913

RESUMO

Elpidium species exclusively inhabiting confined and temporary environments, such as those of tank-bromeliads, are a source of interesting and diverse studies on taxonomy, evolution and ecology, to name a few. However, despite its great diversity of species or potential for study, this genus (and other phytotelm members) has been poorly studied. In the last years, however, description of Elpidium species increased from six before 2013 to 11 today. This study is an effort to keep uncovering its great diversity and to go further in order to deeply understand the genus Elpidium. To this end, this study describes another species in the genus, Elpidium litoreum sp. nov., and proposes a phylogenetic reconstruction of it based on morphological characters. Our results point to the monophyly of Elpidium and puts Intrepidocythere ibipora as its sister-group. Although the phylogeny revealed some interesting relations, it also exposed some incongruities that ultimately demonstrate how superficial the current knowledge about the genus is. All these questions are discussed in detail. We see this work as at the same time an effort to better understand Elpidium and a stimulus to other researches to turn their attention to the historically neglected phytotelmata community.

5.
J Anim Ecol ; 91(2): 428-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808001

RESUMO

The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems. We used natural microecosystems (tank-bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro-organisms, (b) aquatic macro-organisms and (c) terrestrial predators (i.e. via cross-ecosystem effects). The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web-building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro- or macro-organisms but did positively affect the abundance of web-building terrestrial predators. These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.


As interações interespecíficas dentro e entre ecossistemas adjacentes dependem fortemente das mudanças de seus componentes abióticos e bióticos. Entretanto, pouco se sabe sobre como mudanças climáticas e a perda de biodiversidade em um ecossistema específico pode impactar as múltiplas interações tróficas de diferentes grupos biológicos dentro e entre ecossistemas. Nós utilizamos micro ecossistemas naturais (bromélias-tanque) como sistema modelo para investigar os efeitos individuais e interativos do aquecimento e da perda de predadores aquáticos (simplificação trófica) nas relações tróficas em três compartimentos integrados da teia alimentar: i) micro-organismos aquáticos, ii) macroorganismos aquáticos e iii) predadores terrestres (via efeito entre ecossistemas). A perda de predadores de topo aquáticos afetou substancialmente os três compartimentos da rede trófica. No compartimento da macrofauna aquática, a simplificação trófica aumentou a riqueza e abundância de filtradores, direta e indiretamente, por meio de um aumento da riqueza de espécies de detritívoros, provavelmente através de uma interação de facilitação. Para o compartimento da microbiota, a perda de predadores de topo aquáticos teve um efeito negativo sobre a riqueza de espécies de algas, provavelmente por meio da diminuição da entrada de nutrientes provenientes das atividades biológicas dos predadores. Além disso, os predadores terrestres mais ativos responderam mais à perda de predadores de topo aquáticos, por meio de um aumento de alguns componentes da macrofauna aquática, do que predadores terrestres mais estacionários. A simplificação trófica aquática alterou indiretamente a riqueza e abundância de predadores cursoriais terrestres, mas esses efeitos tiveram direção diferente de acordo com o grupo funcional aquático, filtradores ou outros detritívoros. Os predadores construtores de teias foram indiretamente afetados pela simplificação trófica aquática devido ao aumento da riqueza de filtradores. O aquecimento aquático não afetou os micro ou macro organismos aquáticos, mas afetou positivamente a abundância de predadores terrestres construtores de teias. Esses resultados nos permitem levantar um quadro preditivo de como diferentes mudanças antropogênicas preditas para as próximas décadas, como o aquecimento e a perda de predadores de topo aquáticos, podem afetar diferencialmente vários grupos biológicos por meio de interações dentro e entre os ecossistemas.


Assuntos
Ecossistema , Microbiota , Animais , Organismos Aquáticos , Biodiversidade , Cadeia Alimentar , Comportamento Predatório
6.
Microsc Res Tech ; 85(1): 253-269, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34369639

RESUMO

Tillandsia L. is the largest genus of the family Bromeliaceae, containing 755 species and seven subgenera. Morphoanatomical studies of leaves provide useful characteristics to phylogenetic, taxonomic, and ecological analyses. This study aims to characterize and compare the leaves of 24 species of the four subgenera of Tillandsia that occur in Bahia and also perform adaptative inferences to environmental responses. The results of the species' morphoanatomical studies were compared through dissimilarity analysis. The species have rosulate leaves with varying lengths and widths. The peltate trichomes present variation in the indument density and the length of their wing and central disk. The stomata are longitudinally distributed in one or both sides of the limb. The mesophyll is dorsiventral and presents aquiferous and chlorophyllic parenchymas. The vascular bundles are collateral and partially covered by fibers, except for Tillandsia linearis. Based on the dissimilarity analysis, it was possible to identify the formation of five groups. Group G1 was composed of T. linearis, which diverged from the other species of the subgenus. Group G2 was formed by the remaining species of the subgenus Phytarrhiza. G3 and G4 presented the species of the subgenus Diaphoranthema and Tillandsia, respectively. Group G5 gathered 11 species of the subgenus Anoplophytum and presented higher variability than the other subgenera. Based on the results, the morphoanatomical characteristics can be used to characterize and group Tillandsia species, besides confirming the morphological variability of these species to the epiphyte habit in different environments, especially xeric ones.


Assuntos
Bromeliaceae , Tillandsia , Animais , Microscopia Eletrônica de Varredura , Filogenia , Folhas de Planta
7.
Ecol Lett ; 24(12): 2660-2673, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537987

RESUMO

Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communities and the role of underlying stabilising mechanisms. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and species stability. The magnitude of destabilising effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilises large food webs, regardless of climate warming scenarios.


Assuntos
Cadeia Alimentar , Microbiota , Biodiversidade , Mudança Climática , Estado Nutricional
8.
Infect Genet Evol ; 85: 104456, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32668366

RESUMO

Kerteszia cruzii is a sylvatic mosquito and the primary vector of Plasmodium spp., which can cause malaria in humans in areas outside the Amazon River basin in Brazil. Anthropic changes in the natural environments are the major drivers of massive deforestation and local climate change, with serious impacts on the dynamics of mosquito communities and on the risk of acquiring malaria. Considering the lack of information on the dynamics of malaria transmission in areas across the Atlantic Forest biome, where Ke. cruzii is the dominant vector, and the impact of climate drivers of malaria, the present study aimed to: (i) investigate the occurrence and survival rate of Ke. cruzii based on the distinct vegetation profiles found in areas across the coastal region of the Brazilian Atlantic Forest biome; (ii) estimate the extrinsic incubation period (EIP) and survival rates of P. vivax and P. falciparum parasites in Ke. cruzii under current and future scenarios. The potential distribution of Plasmodium spp. was estimated using simulation analyses under distinct scenarios of average temperature increases from 1 °C to 3.7 °C. Our results showed that two conditions are necessary to explain the occurrence and survival of Ke. cruzii: warm temperature and presence of the Atlantic Forest biome. Moreover, both Plasmodium species showed a tendency to decrease their EIP and increase their estimated survival rates in a scenario of higher temperature. Our findings support that the high-risk malaria areas may include the southern region of the distribution range of the Atlantic Forest biome in the coming years. Despite its limitations and assumptions, the present study provides robust evidence of areas with potential to be impacted by malaria incidence in a future scenario. These areas should be monitored in the next decades regarding the occurrence of the mosquito vector and the potential for malaria persistence and increased occurrence.


Assuntos
Anopheles/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium falciparum/parasitologia , Plasmodium vivax/parasitologia , Animais , Anopheles/fisiologia , Brasil/epidemiologia , Mudança Climática , Ecossistema , Florestas , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia
9.
PeerJ ; 8: e8642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612879

RESUMO

The known diversity of treefrogs of the genus Phyllodytes has rapidly increased in recent years, currently comprising 14 species. Recent field work in the Atlantic Rainforest of the state of Bahia lead to the discovery of a new large species of Phyllodytes which is herein described based on multiple evidence including morphological, acoustical and genetic data. Phyllodytes sp. nov. is one of the largest species within the genus and presents immaculate yellowish dorsum and limbs. The advertisement call of the species is composed of 7-31 notes (half pulsed/pulsatile-half harmonic) with frequency-modulated harmonics. Phyllodytes sp. nov. has a karyotype of 2n = 22 chromosomes, as also found in other species of the genus. Genetic distance values of the 16S mitochondrial rRNA among Phyllodytes sp. nov. and its congeners range between 6.4 to 10.2%. The description of another new species for this state reinforces the need for further taxonomic work with Phyllodytes in this region that has been revealed as a priority area for research and conservation of this genus.

10.
Evolution ; 74(8): 1815-1825, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510580

RESUMO

Many animals breed exclusively in plants that accumulate rainwater (phytotelma; e.g., bromeliad, bamboo, fruit husk, and tree hole), to which they are either physiologically or behaviorally specialized for this microhabitat. Of the numerous life-history modes observed in frogs, few are as striking or potentially consequential as the transition from pond- or stream-breeding to the deposition of eggs or larvae in phytotelmata. Such specialization can increase offspring survivorship due to reduced competition and predation, representing potential ecological opportunity for adaptive radiation, yet few lineages of phytotelma-breeding frogs appear to have diversified extensively after such a transition, at least in the New World. We use a phylogeny of Neotropical frogs and data on breeding microhabitat to understand the evolutionary transitions involved with specialized phytotelma-breeding. First, we find that phytotelma-breeding is present in at least 168 species in 10 families of frogs. Across the phylogeny, we estimate 14 origins of phytotelma-breeding and 115 reversals, showing that phytotelma-breeding is a highly labile character. Second, phytotelma-breeding lineages overall have higher net diversification than nonphytotelma-breeding ones. This specialization represents an ecological opportunity resulting in increased diversification in most families with phytotelma-breeding lineages, whereas phytotelma-breeding toads have restricted diversification histories.


Assuntos
Anuros/genética , Evolução Biológica , Ecossistema , Reprodução , América , Animais , Modelos Genéticos
11.
Insects ; 11(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210098

RESUMO

In the Yucatan Peninsula, the ponerine ant Neoponera villosa nests almost exclusively in tank bromeliads, Aechmea bracteata. In this study, we aimed to determine the factors influencing nest site selection during nest relocation which is regularly promoted by hurricanes in this area. Using ants with and without previous experience of Ae. bracteata, we tested their preference for refuges consisting of Ae. bracteata leaves over two other bromeliads, Ae. bromeliifolia and Ananas comosus. We further evaluated bromeliad-associated traits that could influence nest site selection (form and size). Workers with and without previous contact with Ae. bracteata significantly preferred this species over others, suggesting the existence of an innate attraction to this bromeliad. However, preference was not influenced by previous contact with Ae. bracteata. Workers easily discriminated between shelters of Ae. bracteata and A. comosus, but not those of the closely related Ae. bromeliifolia. In marked contrast, ants discriminated between similar sized Ae. bracteata and Ae. bromeliifolia plants, suggesting that chemical cues and plant structure play an important role. Size was also significant as they selected the largest plant when provided two dissimilar Ae. bracteata plants. Nest site selection by N. villosa workers seems to depend on innate preferences but familiarization with plant stimuli is not excluded.

12.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829184

RESUMO

Phytotelmata (sing. phytotelma) are plant-associated reservoirs of rainwater and organic debris. These freshwater ecosystems are found in tree and bamboo holes, pitcher plants, and tank-forming bromeliads. Some studies suggest that anthropic disturbance (AD) may change the physico-chemical properties (PCPs) of the water retained in the phytotelma, and indirectly impact its biota. Hence, new AD-bioindicators could be found in the phytotelma biota. To test this hypothesis, three areas of Atlantic Forest were selected, distinct only by the level of long-term AD. In these areas, we monitored the nematode trophic structure and the water PCPs in the bromeliad Neoregelia cruenta during two years (eight seasons). Significant differences among areas were found in some seasons for total nematode abundance and/or the abundance of some trophic groups, but no pattern emerged relative to the level of AD. Anthropic disturbance did not impact nematode trophic structure possibly because the water PCPs remained fairly similar in all three areas. Our results do not corroborate previous reports that AD alters phytotelma water. On the other hand, our findings support previous studies suggesting that nematodes inhabiting bromeliad phytotelma are not good candidates for AD-bioindicators.

13.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829205

RESUMO

The term phytotelma (pl. phytotelmata) designates a plant-associated reservoir of fresh water and organic debris. Phytotelmata in tank bromeliads are abundant in tropical forests, and they provide shelter, food, and water for many metazoans. Among the invertebrates known to inhabit phytotelmata, nematodes are the least studied, despite their important role in nutrient and energy cycles in freshwater ecosystems. This study was conceived to characterize the nematode trophic structure in the phytotelma of the bromeliad N. cruenta, and to identify climate and microenvironmental variables that impact it. Nematode abundance (total and per trophic group), rainfall, air temperature, the amount of organic debris fallen into the phytotelma, and eight physico-chemical properties (PCPs) of the water retained in the bromeliad tank - volume; temperature; pH; dissolved organic carbon, nitrogen, oxygen, and solids; and electrical conductivity - were monitored during two years in a natural reserve in Brazil. Bacterial and hyphal feeder nematodes predominated over other trophic groups. Nematode abundance (total and per trophic group) was not impacted by fluctuations in rainfall or air temperature. The amount of organic debris fallen into the phytotelma correlated positively with nematode abundance (total and per trophic group). Regarding the PCPs of water, the only significant correlation - positive - was between the amount of dissolved oxygen and the abundance of hyphal feeder nematodes. These results bring a clearer understanding of the ecology of nematodes inhabiting phytotelmata, which are peculiar and understudied freshwater ecosystems.

14.
Acta sci., Biol. sci ; 42: e52940, fev. 2020. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1460951

RESUMO

Alcantarea nahoumii(Leme) J. R. Grant is a species native to theAtlantic Forest that stands out for ornamental purposes. The objective of this work was to evaluate the in vitrogerminationof A. nahoumiiseeds and establish a micropropagation protocol for production of seedlings so as to minimize the effects of predatory extractivism and develop an in vitroconservation system. Mature seeds were disinfested, established in three culture media (MS, MS½ and MS⅓) and incubated at four temperatures (20, 25, 30 and 35ºC)in a germination chamber. In the micropropagation experiment, stem segments were introduced in MS medium supplemented with 0.5 μM of 1-naphthaleneacetic acid (NAA) and 0.0, 2.2, 4.4 and 6.6 μM of 6-benzylaminopurine (BAP). For the in vitroconservation, plantlets were established in MS or MS½ medium supplemented with 15 g L-1or 30 g L-1of sucrose. The plants were acclimated with commercial substrate. The highest seed germination percentages were promoted by temperature conditions of 20 and 25ºC, with MS culture medium. The highest multiplication rate of shoots was obtained from the treatment without addition of the growth regulator or when combined with 2.2 μM of BAP + 0.5 μM of NAA. The acclimation of the plants occurred with high survival rate. The species can be conserved in vitrounder slow growth condition for 24 months when incubated in MS medium supplemented with 30 g L-1of sucrose.


Assuntos
Bromeliaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Florestas , Técnicas In Vitro
15.
Braz. j. biol ; 79(3): 410-413, July-Sept. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1001463

RESUMO

Abstract Cosmarium bromelicola sp. nov. is a new desmid species described from samplings carried out in bromeliad tanks (phytotelmata) from an area of rocky outcrops at Serra da Jiboia, Bahia State, Northeast Brazil. Presence of subtrapeziform cells with a deep depression at the apical region and twisted X-shaped cell in side view are the diagnostic features for the species. Relationships with the morphologically closest taxa are discussed.


Resumo Cosmarium bromelicola sp. nov. é uma nova espécie de desmídia descrita a partir de amostragens realizadas em tanques de bromélias (fitotelmata) de uma área de afloramentos rochosos na Serra da Jiboia, Bahia, nordeste do Brasil. A presença de células trapeziformes com uma depressão profunda na região apical e célula em forma de X em vista lateral são as características diagnósticas da espécie. Relações com os táxons morfologicamente próximos são discutidas.


Assuntos
Desmidiales/classificação , Brasil , Bromeliaceae/microbiologia , Desmidiales/citologia , Desmidiales/fisiologia
16.
Ecol Evol ; 9(12): 7360-7372, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380056

RESUMO

The unprecedented loss of biological diversity has negative impacts on ecosystems and the associated benefits which they provide to humans. Bromeliads have high diversity throughout the Neotropics, but they have been negatively affected by habitat loss and fragmentation, climate change, invasive species, and commercialization for ornamental purpose. These plants provide direct benefits to the human society, and they also form microecosystems in which accumulated water and nutrients support the communities of aquatic and terrestrial species, thus maintaining local diversity. We performed a systematic review of the contribution of bromeliads to ecosystem services across their native geographical distribution. We showed that bromeliads provide a range of ecosystem services such as maintenance of biodiversity, community structure, nutrient cycling, and the provisioning of food and water. Moreover, bromeliads can regulate the spread of diseases, and water and carbon cycling, and they have the potential to become important sources of chemical and pharmaceutical products. The majority of this research was performed in Brazil, but future research from other Neotropical countries with a high diversity of bromeliads would fill the current knowledge gaps and increase the generality of these findings. This systematic review identified that future research should focus on provisioning, regulating, and cultural services that have been currently overlooked. This would enhance our understanding of how bromeliad diversity contributes to human welfare, and the negative consequences that loss of bromeliad plants can have on communities of other species and the healthy functioning of the entire ecosystems.

17.
Am J Bot ; 106(7): 943-957, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31294833

RESUMO

PREMISE: Because of its broad range in the neotropical rainforest and within tree canopies, the tank bromeliad Guzmania monostachia was investigated as a model of how varying leaf hydraulic conductance (Kleaf ) could help plants resist and recover from episodic drought. The two pathways of Kleaf , inside and outside the xylem, were also examined to determine the sites and causes of major hydraulic resistances within the leaf. METHODS: We measured leaf hydraulic conductance for plants in the field and laboratory under wet, dry, and rewetted conditions and applied physiological, anatomical, and gene expression analysis with modeling to investigate changes in Kleaf . RESULTS: After 7 d with no rain in the field or 14 days with no water in the glasshouse, Kleaf decreased by 50% yet increased to hydrated values within 4 d of tank refilling. Staining to detect embolism combined with modeling indicated that changes outside the xylem were of greater importance to Kleaf than were changes inside the xylem and were associated with changes in intercellular air spaces (aerenchyma), aquaporin expression and inhibition, and cuticular conductance. CONCLUSIONS: Low values for all conductances during drying, particularly in pathways outside the xylem, lead to hydraulic resilience for this species and may also contribute to its broad environmental tolerances.


Assuntos
Bromeliaceae/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Aquaporinas/metabolismo , Bromeliaceae/anatomia & histologia , Secas , Folhas de Planta/anatomia & histologia
18.
Glob Chang Biol ; 25(10): 3528-3538, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31148300

RESUMO

Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental change further hampers meaningful predictions. As multiple climatic variables shift in concert, their potential interactions further complicate ecosystem responses. Despite awareness of these complexities, we still lack controlled experiments that manipulate multiple climatic stressors, species interactions, and prior exposure of species to future climatic conditions. Particularly studies that address how changes in water availability interact with other climatic stressors to affect aquatic ecosystems are still rare. Using aquatic insect communities of Neotropical tank bromeliads, we combined controlled manipulations of drought length and species interactions with a space-for-time transplant (lower elevations represent future climate) and a common garden approach. Manipulating drought length and experiment elevation revealed that adverse effects of drought were amplified at the warmer location, highlighting the potential of climatic stressors to synergistically affect communities. Manipulating the presence of omnivorous tipulid larvae showed that negative interactions from tipulids, presumably from predation, arose under drought, and were stronger at the warmer location, stressing the importance of species interactions in mediating community responses to climate change. The common garden treatments revealed that prior community exposure to potential future climatic conditions did not affect the outcome. In this powerful experiment, we demonstrated how complexities arise from the interplay of biotic and abiotic mechanisms of climate change. We stress that single species can steer ecological outcomes, and suggest that focusing on such disproportionately influential species may improve attempts at making meaningful predictions of climate change impacts on food webs.


Assuntos
Mudança Climática , Cadeia Alimentar , Animais , Ecologia , Ecossistema , Comportamento Predatório
19.
Plant Physiol Biochem ; 139: 642-650, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31048121

RESUMO

The Bromeliaceae family, which is distributed pantropically, is one of the most morphologically diverse families. Except for the edible pineapple (Ananas comosus), the vast majority of bromeliads cultivated worldwide are appreciated mainly for their ornamental value. As subtropical and tropical flowering plants, these bromeliads, among with Aechmea fasciata, have significant economic importance. However, the molecular mechanism of flowering in bromeliads remains unrevealed. In this study, an APETALA2 (AP2) homologue, AfAP2-2, which belongs to the AP2/ethylene response element binding protein (AP2/EREBP) transcription factor superfamily, was identified in A. fasciata. AfAP2-2 contains two conserved AP2 domains and is a nuclear-localized transactivator. The expression level of AfAP2-2 was predominantly higher in vegetative organs of the reproductive phase than in those of the vegetative phase. Ectopic expression of AfAP2-2 in Arabidopsis specifically delayed flowering in short-day (SD) conditions. Furthermore, the size and weight of seeds of AfAP2-2-overexpressing Arabidopsis plants were significantly reduced compared to those of the wild type (WT). Our findings suggest that AfAP2-2 might be a negative regulator of flowering and seed size and weight. These results may help facilitate the molecular breeding of bromeliads.


Assuntos
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Expressão Ectópica do Gene , Flores/genética , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Sementes/genética , Sementes/fisiologia
20.
Pathog Glob Health ; 113(1): 1-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30829565

RESUMO

Malaria remains a serious public health problem in Brazil despite a significant drop in the number of cases in the past decade. We conduct a comprehensive analysis of malaria transmission in Brazil to highlight the epidemiologically most relevant components that could help tackle the disease. We consider factors impacting on the malaria burden and transmission dynamics including the geographical occurrence of both autochthonous and imported infections, the distribution and abundance of malaria vectors and records of natural mosquito infections with Plasmodium. Our analysis identifies three discrete malaria transmission systems related to the Amazon rainforest, Atlantic rainforest and Brazilian coast, respectively. The Amazonian system accounts for 99% of all malaria cases in the country. It is largely due to autochthonous P. vivax and P. falciparum transmission by mosquitoes of the Nyssorhynchus subgenus, primarily Anopheles darlingi. Whilst P. vivax transmission is widespread, P. falciparum transmission is restricted to hotspot areas mostly in the States of Amazonas and Acre. This system is the major source of P. vivax exportation to the extra-Amazonian regions that are also affected by importation of P. falciparum from Africa. The Atlantic system comprises autochthonous P. vivax transmission typically by the bromeliad-associated mosquitoes An. cruzii and An. bellator of the Kerteszia subgenus. An. cruzii also transmits simian malaria parasites to humans. The third, widespread but geographically fragmented, system is found along the Brazilian coast and comprises P. vivax transmission mainly by An. aquasalis. We conclude that these geographically and biologically distinct malaria transmission systems require specific strategies for effective disease control.


Assuntos
Malária/transmissão , Animais , Brasil/epidemiologia , Emigração e Imigração/estatística & dados numéricos , Geografia Médica , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Mosquitos Vetores/parasitologia , Floresta Úmida , Migrantes/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...